UNEQUIVOCAL EVIDENCE FOR A β-D-CONFIGURATION OF THE GALACTOSE RESIDUE IN THE DISACCHARIDE CHAIN OF EPIGLYCANIN, THE MAJOR GLYCOPROTEIN OF THE TA3-Ha TUMOR CELL

John F. CODINGTON, Tatsumi YAMAZAKI, Dirk H. van den EIJNDEN⁺, Neil A. EVANS* and Roger W. JEANLOZ

Laboratory for Carbohydrate Research, Departments of Biological Chemistry and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA

Received 19 December 1978

1. Introduction

The presence of a disaccharide chain composed of D-galactose and 2-acetamido-2-deoxy-D-galactose residues attached by an O-glycosyl linkage to serine or threonine in the protein backbone has been reported for many animal glycoproteins, including epiglycanin from the TA3-Ha mammary carcinoma ascites cell [1], as well as glycoproteins from rat brain [2], rabbit brain [3], antarctic [4] and arctic [5] fish, and fetuin from fetal calf serum [6]. The determination of the configuration at the anomeric carbon atom of the D-galactopyranosyl residue (of the isolated reduced disaccharide) has often been equivocal, due to the resistance of the D-Gal-D-GalNAc-ol bond to cleavage by either α - or β -galactosidases [2,3,7]. Since the complete or partial cleavage by β -galactosidases reported in a few cases [4,6,8] was obtained only with difficulty, an unequivocal proof for the configuration of this linkage was necessary.

Following the work in [1,7], the presence of the β -anomer of the D-galactose residue of the disaccharide was considered likely. This was mainly on the basis of the strong inhibitory activity for the hemagglutina-

tion of human erythrocytes of N blood-group specificity by the lectin from *Vicia graminea* seeds, an activity that had been attributed to a structure of this type [9], although without strong evidence. In addition, the occurrence of a terminal sialic acid residue attached to an α -D-linked galactose residue had not, to our knowledge, been demonstrated to occur in mammalian systems [2], and the presence of an *N*-acetylneuraminic acid residue attached to a D-galactose residue in the disaccharide had been suggested as a second chain type in epiglycanin [1].

Because of the high proportion of the disaccharide chains in epiglycanin, it was possible to obtain a sufficient amount of material for a definitive determination of the configuration of the anomeric carbon of the D-galactose residue by NMR. These results have shown that the galactose residue is in the β -D-form, and that the disaccharide has the structure, 2-acetamido-2-deoxy-3-O-(β -D-galactopyranosyl)-D-galactose, as shown in fig.1.

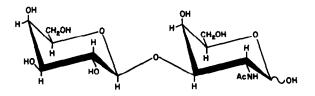


Fig.1

⁺ Present address: Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands

^{*} Present address: CSIRO Division of Protein Chemistry, Parkville, VIC 3052, Australia

2. Materials and methods

The reduced disaccharide, D-Gal→D-GalNAc-ol, was obtained by alkaline cleavage from epiglycanin [1] under reductive conditions (NaBH₄) and subsequent purification by ion-exchange and gel-filtration chromatography, as in [10]. The NMR spectra were recorded on a Varian FT-80 instrument at 30 rev./s and 22°C. Chemical shifts (δ) are relative to sodium 2,2-dimethyl-2-sila pentane-5-sulfonate. The spectrum of the reduced disaccharide (2.6 mg) in ²H₂O was recorded after 1014 scans. This material was then dried and peracetylated with 0.1 ml acetic anhydride and 0.8 ml dry pyridine for 38 h at 22°C. The resulting amorphous product was dried extensively in vacuo, dissolved in C²HCL₃, and its NMR spectrum recorded after 1030 scans, as above.

3. Results and discussion

Epiglycanin, the major glycoprotein of the TA3-Ha mammary carcinoma ascites cell, consists of ~530 carbohydrate chains attached to a single extended polypeptide chain of ~1300 amino acid residues [1,7]. Its molecular weight, as determined by sedimentation equilibrium, and confirmed by electron microscopic measurements [11], is ~500 000. By alkaline borohydride reduction of epiglycanin [1], followed by ion-exchange and gel-filtration chromatography, it has been possible to isolate from epiglycanin [1], five different reduced oligosaccharides, each representing a different chain structure [10]. The most abundant of the chains, a disaccharide of Gal and GalNAc in equimolar proportions, was found to comprise ~60% of the total number of the

carbohydrate chains, isolated in reduced form. By permethylation, followed by gas—liquid chromatography—mass spectrometry, the Gal was shown to be 1→3-linked to the GalNAc-ol [10].

The results of NMR spectroscopy for the reduced disaccharide and its peracetylated derivative are presented in table 1. The $J_{1,2}$ values (7.25 Hz) are identical and are consistent with a β-D-configuration for the galactose residue [12]. The chemical shift of the H-1 signal of the unsubstituted disaccharide (4.46 ppm) is approximately at the expected position for the β-anomer. A chemical shift of 4.68 ppm for β-D-galactose was observed [13], whereas 5.34 ppm was obtained for the \alpha-anomer. The downfield shift of the H-1 signal from 4.46-5.12 ppm upon acetylation was expected and was found to be identical (0.66 ppm) to that observed in [14] upon acetylating methyl 2-acetamido-2-deoxy-6-O-(β-D-galactopyranosyl)-α-D-glucopyranoside. These results clearly establish the B-configuration for the D-galactopyranosyl residue of the disaccharide chain of epiglycanin.

Acknowledgements

This investigation was supported by grants from the National Institutes of Health (CA-08408 and CA-18600). This is publication 764 of the Robert W. Lovett Memorial Group for the Study of Diseases Causing Deformities, Harvard Medical School and Massachusetts General Hospital.

References

[1] Codington, J. F., Linsley, K. B., Jeanloz, R. W., Irimura, T. and Osawa, T. (1975) Carbohydr. Res. 40, 171-182.

Table 1
NMR results for 2-acetamido-2-deoxy-3-O-(β-D-galactopyranosyl)galactitol and its peracetylated derivative

Compound	Solvent	Chemical shift (δ) H-1 of Gal residue	Coupling constant $(J_{1,2})$
Unsubstituted disaccharide Peracetylated	²H₂O	4.46	7.25
disaccharide	C²HCl3	5.12	7.25

- [2] Finne, J. (1975) Biochim. Biophys. Acta 412, 317-325.
- [3] Margolis, R. K. and Margolis, R. W. (1973) Biochim. Biophys. Acta 304, 421-429.
- [4] Vandenheede, J. R., Ahmed, A. I. and Feeney, R. E. (1972) J. Biol. Chem. 247, 7885-7889.
- [5] Osyga, D. T. and Feeney, R. E. (1978) J. Biol. Chem. 5338-5343.
- [6] Spiro, R. G. and Bhoyroo, V. D. (1974) J. Biol. Chem. 249, 5704-5717.
- [7] Codington, J. F., Van den Eijnden, D. H. and Jeanloz, R. W. (1978) Cell Surface Carbohydrate Chemistry, pp. 49-66, Academic Press, New York.
- [8] Baenziger, J. and Kornfeld, S. (1974) J. Biol. Chem. 249, 7270-7281.

- [9] Uhlenbruck, G. and Dahr, W. (1971) Vox Sang. 21, 338-351.
- [10] Van den Eijnden, D. H., Evans, N. A., Codington, J. F., Reinhold, V., Silber, C. and Jeanloz, R. W. (1978) in preparation.
- [11] Slayter, H. S. and Codington, J. F. (1973) J. Biol. Chem. 248, 3405-3410.
- [12] Rathbone, E. B., Stephen, A. M. and Pachler, K. G. R. (1971) Carbohydr. Res. 20, 357-367.
- [13] Lemieux, R. U. and Stevens, J. D. (1966) Can. J. Chem. 44, 249-262.
- [14] Aspinall, G. O., Przybylski, E., Pithie, R. G. S. and Wong, C. O. (1978) Carbohydr. Res. 66, 225-243.